

4D Data Reanalysis/Assimilation with Satellite, Radar and the Extensive Field Measurements

Donghai Wang^{1,2}, Patrick Minnis² and Louis Nguyen²

¹Center for Atmospheric Sciences, Hampton University, Hampton, VA ²NASA Langley Research Center, Hampton, VA

Introduction

- To produce a high-resolution 4D assimilated data set that is consistent with the dynamical and thermodynamical processes of the atmosphere.
 - To provide more realistic meteorological conditions in supporting extensive modeling and validation studies.
- To provide "a continuous movie of the atmosphere" for characterizing cirrus cloud systems in dynamics and microphysics, and their roles in both regional and global weather/climate.
- The Advanced Regional Prediction System (ARPS) and its data analysis/assimilation system are used for the real-time supporting forecasts (see the website:) and for this 4D data reanalysis/assimilation.

Data

- Surface observations: Hourly METARs, including the cloud reports
- Upper-level soundings: NWS/PARSL/Mible radiosondes and Dropsondes
- · Satellite observations: GOES-8 IR and visible imagery data
- Radar data: WSR-88D (NEXRAD) Level II reflectivity

Motivation

- Reflectivity mosaics provide more complete depictions of convective storm structure than products from single radars.
- The mosaic gridded data can be more easily combined with information from additional data sources (e.g., satellite, model analyses and forecast fields).

Multi-radar mosaic methodology

- Multiple radar observations are blended using a weighted average scheme.
- The weight given to a radar observation is dependant on the distance between the radar and the observation.

3D Multi-Radar Reflectivity Mosaic

4D Data Assimilation – Hourly Continuous Assimilation Cycling

(A sample case of July 16, assimilated from 15Z to 24Z on both 15-km and 3-km grid)

Future Work

- To make use of satellite-derived cloud properties, to provide more detailed cloud information for data assimilation.
- To attempt 1-km resolution with more frequently assimilation-cycling (30 min or 15 min).
- To validate the assimilation data with the extensive experiment measurements.
- To conduct the cloud-radiation interaction physics for the assimilation system, to produce the radiative properties.

Acknowledgment. This work is supported by the NASA CRYSTAL-FACE project. The supercomputing resource is provided by NASA Center for Computational Sciences (NCCS).